chloride leads to halogen interchange: J. San Filippo, Jr., A. F. Sowinski,
and L. J. Romano, *J. Org. Chem.*, **40,** 3295 (1975).
(3) A. J. Leffler and R. Penque, *Inorg. Syn.,* 12, 187 (1970). Molybdenum(V)

- chloride is also available from several commercial sources.
- (4) Molybdenum(V) chloride reacts rapidly with both water and molecular oxygen3 and failure to exclude these substances leads to a diminished product yield.
- (5) The relative reactivities of alkyl fluorides, chlorides, and bromides toward free-radical halogenation vary with the nature of the halide and the structure of the alkyl moiety. However, in general, carbons vicinal to the halogen-containing carbon are characterized by a *diminished* relative reactivity.6 **A** particular exception is the free-radical bromination of
- alkyl bromides in which vicinal bromination is actually favored.^{7,8}
(6) (a) W. A. Pryor, "Free Radicals", McGraw-Hill, New York, N.Y., 1966,
Chapter 3; (b) C. Walling and M. F. Mayahi, *J. Am. Chem. Soc.,* **81,**
1485 (1
- (7) P. S. Skell and P. D. Readio, *J. Am. Chem. Soc.,* **86,** 3334 (1964); J. G.
Traynham and W. G. Hines, *ibid.,* 90, 5208 (1968).
(8) P. S. Skell, R. R. Pavlis, D. C. Lewis, and K. J. Shea, *J. Am. Chem*.
- *SOC.,* **95,** 6735 (1973); K. J. Shea, D. C. Lewis, and P. *S.* Skell, *bid.,* **95,** 7768 (1973), and references therein.
(9) G. A. Russel, A. Ito, and R. Konai
- (9) G. **A.** Russel, **A.** Ito, and **R.** Konaka, *J. Am. Chem.* **SOC.** *85,* 2988 (1963); G. **A. Russel** and **A.** Ito, *ibid., 85,* 2983 (1963).
- **(10) As** indicated by control experiments, **trans-l,2-dichlorocyclohexane** is not converted into **cis-1,2-dichlorocyclohexane** by MoCls under reaction conditions.
- (11) R. Cramer, *Acc. Chem. Res.,* **1,** 166(1968).
- **(12) G.** M. Whitesides, J. F. Gaasch, and **E. R.** Stedronsky, *J. Am. Chem. Soc.,* **94,** 5258 (1972), and references therein.
- (13) Vicinal chlorination of olefins by molybdenum(V) chloride is known: J. San Filippo, Jr.. **A. F.** Sowinski, and **L.** J. Romano, *J. Am. Chem.* **SOC., 97,** 1599 (1975).
- (14) Exxon Summer Research Fellow, 1974.

Received July *14, 1975*

Anomalously Large Steric Inhibition **of** Intramolecular 0,N-Acyl Transfer to **Amino** Acid Esters

Summary: Michael adducts of o -acetoxy- β -nitrostyrene and amino acid esters are found to undergo quantitative intramolecular, O, N -acyl transfer at anomalously slow rates; a model which rationalizes slow intramolecular acyl transfer to hindered amino acid derivatives is proposed.

 $Sir:$ Earlier,¹ we reported experiments demonstrating amide formation by intramolecular acyl transfer to an amine, trapped by a prior reaction with an electrophilic site. In the accompanying communication, 2 we apply this principle to peptide synthesis. Here we demonstrate and rationalize an unexpected, large steric inhibition of intramolecular 0,N-acyl transfer which defines the scope of the principle.

In our earlier study, carbonyl functions were employed as amine trapping sites, and unwanted 0-acyl transfer and dehydration were observed. To avoid these complications, we have investigated nitrostyrene derivatives. Reactions of **1** with primary amines yield Michael adducts in nearly quantitative yield;3 rate constants fell in the range of *0.2* to $4 M^{-1}$ min^{-1.4}

Most strikingly, the intramolecular O, N -acyl transfer, 2
 \rightarrow 3, which can occur via an apparently favorable cyclic sixatom linkage, is slow and is subject to an exceedingly large steric effect. Thus, in acetonitrile a rate constant of 0.02 min^{-1} is observed at 25° for NH_2-R' =HGlyOEt, while for methyl esters of Ala, Phe, and Val, respective values of 2 **X** 10^{-4} , 7×10^{-5} , and 2×10^{-5} min⁻¹ are observed. The rate ratios of 100 for Gly/Ala and 1000 for Gly/Val may be contrasted with the respective values of **4** and 10, observed for

the corresponding intermolecular aminolysis of *p* -nitrophenyl esters.⁵

Replacing acetoxy by carbobenzoxyglycyl resulted in no systematic change in acyl migration rate. More surprisingly, an attempt to buttress the acyloxy group by using 3,5 dibromo-2-acetoxynitrostyrene did not result **in** a significant change in acyl transfer rate or rate span. With alanine methyl ester **1** reacts to give two diastereomers, **2,** which rearrange to **3** at rates differing only by a factor of two.

A model which rationalizes the anomalous steric effect can be built from a successful model for steric effects on rates of aminolysis of peptide p -nitrophenyl esters.⁵ Substitution of the additional linkages of **2** into the latter model yields **4** or a diastereomer as the structure of the

tions not shared with **2** or **3** arise in **4** between the nitromethylene group and the ester or alkyl substituent of the amine component. Stabilization of **4** through conformational changes is not possible, since the immediate environment of the carbon of the benzylamine moiety is bounded by the **3-H** of the aromatic function, the alkyl substituent of the acyloxy function, and the nitromethylene group. The latter group encounters an interaction of the type found in a 1,3-diaxially substituted cyclohexane for any transition state **4** except that derived from glycine.

From this model, one predicts that anomalous steric sensitivity is expected for acyl transfer in all derivatives **5** except those in which the electrophilic site **X** is small and minimally substituted; e.g., for **X** equal to sulfur, methylene, or $sp²$ carbon. In the accompanying communication we report normal transfer rates for a methylene system. [An attempt to prepare and study a sulfur case (derived from **l-acetoxy-2-chlorosulfenyl-4-chloronaphthalene)** resulted in very slow transfer rates in an unhindered case (3 \times 10⁻⁴ min⁻¹ for HGlyOEt).]

Although it is difficult to envisage a practical reversible trapping involving an sp2 electrophile, it was of interest to study acyl transfer in such a system, and ethyl esters **of** N- **(2-acetoxyphenyl)glycine,** alanine, and valine were prepared and studied. 6 Most surprisingly, O,N-acyl transfer in the unhindered Gly case is exceedingly sluggish, showing rate constants of 5.5×10^{-4} (CDCl₃), 5.0×10^{-4} (PhH),

and 2.0×10^{-4} min⁻¹ (CD₃CN). The Gly/Ala rate ratios are 2.8 $(CDCl₃)$ and 3.3 (PhH), and the Gly/Val rate ratios are $8 (CD₃CN)$ and $22 (CDCI₃)$; they are thus comparable with the intermolecular cases.'

A successful intramolecular amide synthesis must exhibit (1) a rapid intramolecular O, N -acyl transfer in nonhindered cases and (2) a small sensitivity to steric effects. Our model has successfully rationalized and predicted steric sensitivity. We lack a satisfactory means of predicting nonhindered acyl transfer rates.¹⁰ In this study, nearly a 10⁶fold range of rate constants have been observed for acyl transfer via cyclic five- or six-atom linkages, the noteworthy cases being the sluggish 5-ring acyl transfers observed for o-aminophenyl derivatives (low nucleophilicity of N and strain in the intermediate are important contributors)¹¹ and the very rapid 6- and 7-ring acyl transfers to carbinolamines.¹

Although 0,O-acyl transfers are well documented and almost invariably rapid,¹⁰ the more interesting O, N -acyl shifts are rarer, and rapid cases are unusual. Despite the advanced state of knowledge concerning the principles of acyl transfer in biological systems, there remains a remarkable disparity between the facility of enzymatic acyl transfer and the ease with which it can be achieved in model systems.

Acknowledgment. Financial support from the National Institutes of Health (GM 13453) is gratefully acknowledged.

References and Notes

-
- **(1) D. S. Kemp and F. Vellaccio, Jr.,** *J. Org. Chem.,* **40, 3003 (1975). (2) D. S. Kemp, J. A. Grattan. and J. Reczek,** *J. Org. Chem.,* **following**
- **paper. (3) D. E. Worrall,** *J. Am. Chem. SOC.,* **49, 1598 (1927). 1, mp 73-74', is prepared by acetylation of 2-hydroxynltrostyrene [G. Hahn and K. Stiehl.** *Chem. Ber..* **71, 2154 (1938)l.**
- **(4) Acyl transfer was demonstrated by NMR, ir, and uv: rate constants were measured by NMR. Satisfactory elemental analyses were observed for nitrostyrenes and for products 3.**
- **(5) D. S. Kemp, S. Choong, and J. Pekaar.** *J. Org. Chem.,* **39, 3841 (1974).**
- **(6) K(2-Hydroxypheny1)amIno acid esters were prepared from o-aminophenol as follows: Gly by alkylatlon with ethyl chloroacetate, mp 91- 93'; Ala by Pd/C hydrogenation with ethyl pyruvate, hydrochloride salt,** mp 152–153°; Val by hydrogenation with ethyl α-ketoisovalerate, mp
88–89°. O-Acetylation was achieved by reaction with acetic anhydride–
perchloric acid at −70°, followed by dilution with ether and liberation with NaHCO₃. Rates of transfer were followed by NMR.
(7) Contrary to the implication of an authoritative review,⁸ rapid intramolec-
- **ular acyl transfer of this type has not been previously demonstrated.**
- **(8) T. C. Bruice and S. J. Benkovic, "Bioorganic Mechanisms". W. A. Ben-jamin, New York, N.Y., 1966, Vol. 1, p 188.**
- **(9) A. L. LeRosen and E. D. Smith,** *J. Am. Chem. Soc.,* **71, 2815 (1949).**
- **(10) See ref 8, Chapter 1. (11)** It **can also be argued that an antiperiplanar arrangement of N lone palr and leaving group Is difficult to achieve: P. Deslongchamps. P. Atlani, D. Frebel, and A. Malaval,** *Can. J. Cbem., 50,* **3405 (1972).**

Department of Chemistry **D.** *S.* **Kemp*** *Massachusetts Institute* **Frank Vellaccio, Jr.** *of Technology*

Cambridge, Massachusetts 02139

Received August 15,1975

Peptide Bond Formation by the Prior Amine .Capture Principle

Summary: Amino acid esters react with 4-methoxy-3-acyloxy-2-hydroxybenzaldehydes to form imines, which upon reduction undergo intramolecular acyl transfer to form *N-***4-methoxy-2,3-dihydroxybenzyl** amides, useful in peptide synthesis.

Sir: As outlined in Scheme **I,** we wish to report the feasibility of peptide bond formation through a new principle of intramolecular acylation which is preceded by amine capture.¹

Step 1-Amine Capture. Imine formation from salicylaldehydes occurs with unusually large rate and equilibrium constants.2 Thus, **l3** (R = ZGly) reacts with methyl esters of Ala, Leu, or Phe $(CH₃CN, 25^o, 0.2-0.3 M)$ with halftimes of 4-5 min. Only small rate changes result from variation of R $(t_{1/2} = 5-6$ min for R = ZAla, R' = HAlaOMe; R $=$ HPhe, R' = HValOMe). From two cases, rates appear to be \sim 10 times as fast as in DMSO.

Step 2-Reduction. As a reducing agent for **2,** pyridine borane in acetic acid⁴ is mild, rapid, and quantitative. With a 1:l molar stoichiometry, reaction is complete in <3 min; somewhat slower, complete reaction is also observed with 0.5 equiv of borane. In practice, solvent is removed from **2,** which is dissolved without purification in acetic acid, followed by pyridine borane. Disappearance of the yellow color of **2** indicates complete reaction, whereupon solvent is removed, and **3** is isolated by partitioning between an organic solvent and aqueous bicarbonate.

Step 3-Acyl Transfer. Although the unimolecular⁵ isomerization, $3 \rightarrow 4$, is somewhat retarded by polar solvents (slow in DMSO)? it occurs with half-times in the range of 0.2-4 hr in other media, including neat **3.** Thus for **3** (R = ZGly) transfer to captured Ala, Leu, and Phe occurs with half-times of 15, 40, and 70 min, respectively (CDCl₃, 25°). For 1 $(R = ZPhe$ or ZAla) transfer to Ala gives $t_{1/2}$ values of 120 and 70 min. Steric effects at the amine substitution site are normal7 (the Val/Gly rate ratio appears to be \sim 10). Preparatively, reaction times of 12 hr were convenient.

The yield for the conversion of $1 (R = ZGly)$ and 1 equiv of DL-HPheOEt to 4 was 85% .⁸ Reaction of 1 $(R = ZGly)$ with HLeuGlyOH tetramethylguanidine salt (DMSO, 25°) **5** rnin), followed by precipitation with ether, reduction, and isomerization, resulted in an isolated yield of 92% **4.**

Step 4-Cleavage. Cleavage of this **4** with HBr/HOAc yielded 84% HGly-L-LeuGlyOH, after neutralization. With trifluoroacetic acid in the presence of the trapping agent resorcinol, the **4-methoxy-2,3-dihydroxybenzyl** moiety $(DHMB)$ could be selectively cleaved.^{9} Treatment of PhthGly(N-DHMB)PheOEt with Tfa (1 hr, 25°, 5 equiv of resorcinol) generated 100% PhthGlyPheOEt. A similar